The least positive integer V.

https://www.linkedin.com/groups/8313943/8313943-6412317004698513410

Determine the least positive integer N such that for all integers n > N, .
™Y+ 1M < nl < ™Y (n+1)")""!

Solution by Arkady Alt , San Jose, California, USA.

Leta, := (n™Y(n+1)")",b, :=n!and ¢, := (n"V/(n+1)")"" n e N.

1. Proof of inequality a, < b,, Vn € N (by Math Induction).

First we will prove that for any n € N holds inequality
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where latter inequality holds for any n € N because by Bernoulli’s Inequality
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Since a; = % < 1 = b; and for any » € Nassuming a, < b, and using inequality (1)
we obtain a,. = a, « G < b, - % = bu.
Thus, by Math Induction (n"*!/(n +1)")" < n!,Vn € N.
2. Proof of inequality b, < ¢,, Vn € N\{1}.
First we will prove that for any » € N holds inequality
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By direct calculation we can see that b, = 2,¢, = (23/32)° = % <2 =by,

b3 = 6,03 = (34/43)4 =2.5658 < 6 = b3,...,016 < b16 (Cl6 —b16 ~ —5.726 x 1011).
But b1y < ¢17 because (17'7+1/(17 + 1)') '™ — 171 ~ 8. 1621 x 101"

Inequality 517 < ¢17 can be taken as the base of Math Induction.
Step of Math Induction:
For any natural n > 17 assuming b, < ¢, and using inequality (2)

we obtain b, = b, - % <cpe Cc','zl = Cusl.
n

Thus, 16 is the least natural N such that for all natural » > N holds inequality
n! < (n"/(n+1)")"" and inequality (n"*'/(n+1)")" < n! holds for any natural n.



